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SUMMARY 

The f r ic t ion ,  wear, and metal-transfer charac te r i s t ics  were determined for 
rare-ear th  and re la ted  metals i n  vacuum t o  10-10 millimeter of mercury. 
metals studied were lanthanum, neodymium, praseodymium, cerium, holmium, 
erbium, gadolinium, dysprosium, samarium, y t t r i u m ,  and thallium. Fr ic t ion  and 
wear experiments were conducted with t h e  rare-ear th  or re la ted  metals generally 
s l id ing  against  440-C s t a in l e s s  s t e e l  at s l id ing  ve loc i t i e s  t o  2000 fee t  per 
minute and loads t o  3000 grams. 

The 

The rare-ear th  or re la ted  metals were t h e  
I r ide r  specimens (3/16- in. -rad. hemisphere) s l id ing  on f la t  2--inch-diameter 

disk specimens of 440-C s t a in l e s s  steel. Factors studied were t h e  e f f ec t s  Of 
c rys t a l  s t ruc ture  and crys ta l l ine  phase changes on t h e  f r ic t ion ,  wear, and 
metal-transfer charac te r i s t ics  of these metals i n  vacuum. 
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The r e su l t s  of t h e  investigation indicate  that c rys t a l  s t ruc ture  markedly 
influences f r ic t ion ,  wear, and metal-transfer charac te r i s t ics  of t h e  rare-  
ear th  and re la ted  metals i n  vacuum. Close-packed hexagonal c rys t a l  forms of 
t h e  r a re  ear ths  and of thall ium had much lower f r ic t ion ,  wear, and m e t a l -  
t r ans fe r  charac te r i s t ics  than face-centered or body-centered cubic structures.. 
The lowest f r i c t i o n  coeff ic ients  were obtained with those rare-ear th  metals 
t h a t  have t h e  largest  c-axis ( c rys t a l  height), t h a t  is, those m e t a l s  with t h e  
lanthanum- and samarium-type c rys t a l  s t ructures .  
transformation was observed at a temperature below t h a t  reported i n  t h e  litera- 
ture .  

With neodymium a c rys t a l  

INTRODUCTION 

Lubrication of mechanical components for space devices requires t h e  selec- 
t i o n  of lubricants  and other materials having extreme s t a b i l i t y  i n  a space en- 
vironment. The rare-ear th  metals, atomic numbers 57 t o  7 1  (lanthanum, . . * ?  



lutetium), m e r i t  spec ia l  consideration f o r  research s tudies  directed toward 
fu tu re  space devices. The rare-ear th  metals w i l l  combine with a number of 
gases (e.g., oxygen, nitrogen, hydrogen, e tc . )  t o  form extremely s tab le  com- 
pounds. The oxides of t h e  rare ear ths  a r e  even more s t ab le  than such oxides as 
aluminum oxide. Many of these compounds, because of t h e i r  s t ab i l i t y ,  have 
po ten t i a l  f o r  use i n  s o l i d  lubricant formulations; further,  they can be used as 
phases of a l loys  f o r  self- lubricated components of systems intended f o r  space 
applications.  

The rare-ear th  metals possess some in te res t ing  physical (e.g., they  are 
r e l a t i v e l y  sof t ,  table I) as w e l l  as chemical propert ies  (refs. 1 and 2).  

TABLE I. - PHYSICAL PROPERTIES OF RARE-EARTH AND RELCLTED METAL5 

Lanthanum 
Cerium 
Praseodyaiun 
Neodymium 
Samarium 
Europium 
Gadolinium 
Terbium 
Dysprosium 
Holmium 
Erbium 
Thulium 
Ytterbium 
Lutetium 
Y t t r i u m  
T h a l l i u m  

-~ 

Approxima tl 
hardness , 
k d s q  mm 

40 D P H ) ~  
25 t D P H ) ~  
40 ( D P H ) ~  
35 ( D P H ) ~  
45 (DPH)" 
20 ( D P H ) ~  
55 ( D P H ) ~  
60 ( D F H ) ~  
55 ( D P H ) ~  
60 (DPH)" 
70 (DPH)" 
65 ( D P H ) ~  
25 (DPH)" 
85 (DPH)" 
60 ( D P H ) ~  
2 ( B r i n e l l ,  

Meltin! 
point  , 
OF 

m a  
1463 
1715 
1875 
1962 
1519 
2394 
2473 
2565 
2662 
2732 
2813 
1515 
3006 
2748 
577 

LJlt i m a  t e 
t e n s i l e  

s t rength,  
p s i  

19X103 
15 
16 
25 
18 

28 

36 
38 
42.4 

lo 

15.20 
1.3 

-- 
-- 

-- 
-- 

_. 

Young's 
modulus 
of e l a s .  
t i c i t y ,  

p s i  

5. 6X1O6 
4.4 
5.1 
5.5 
5.0 

8.2 
8.3 
9.2 
9.7 
.O .6 

2.6 

9 - lo 

--- 

--- 
--- 

_- -___ 

Shear 
modulus , 

p s i  

... 

2.2X106 
1.7 
2 .o 
2.1 
1.8 

3.2 
3.3 
3.7 
3.9 
4.3 

1.0 

3.8 

--- 

--- 
--- 

--- 

'oisson's 
r a t i o  

0.29 
.25 
.31 
.31 
.35 

.26 

.26 

.24 

.26 

.24 

.28 

.27 

--- 

--- 
--- 

--- 

Density 
it 68' F, 
g/cc 

6.17 
8.23 
6.78 
7.00 
7.53 
5.26 
7.89 
8.27 
8.53 

9.05 
9.33 
6.98 
9.84 
4.43 
11.85 

a .BO 

aDiamond pyramid hardness.  

With t h e  exception of europium, ytterbium, and cerium, t h e  metals i n  t h e  group 
have a close-packed hexagonal c rys t a l  s t ruc ture  at room temperature. Many of 
t h e  metals undergo c rys t a l  transformations from one phase to another. On t h e  
basis of t h e  Hume-Rothery Rules (ref. 3) f o r  so l id  so lub i l i t y  ( s i ze  and elec- 
tronegative valence e f fec t ) ,  t h e  rare ear ths  should have l imited or no solu- 
b i l i t y  i n  many ferrous alloys.  Such propert ies  prompted a study of t h e  ad- 
hesion charac te r i s t ics  of t h e  rare ear ths  with themselves and with i ron  i n  
reference 4. 
e f f i c i en t s  of adhesion with i ron that are more than one order of magnitude l e s s  
than those of other soft metals (e.g., lead, t i n ,  or indium) with iron. 

The r e s u l t s  of t h e  study indicated t h a t  t h e  r a re  ear ths  have co- 

The c r y s t a l  transformations f o r  some of t h e  rare ear ths  occur at rela- 
t i v e l y  moderate temperatures ( refs .  5 to 7 ) .  Such transformations could be 
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useful  i n  determining the ef fec t  of c rys t a l  s t ruc ture  on t h e  f r i c t i o n  prop- 
e r t i e s  of m e t a l s .  
ing various c rys t a l l i ne  phases, t h e  problem of differences i n  other physical  
propert ies  encountered with diss imilar  m e t a l s  with t h e  same c rys t a l  s t ruc ture  
is  avoided. Although attempts have been made t o  cor re la te  c rys t a l  s t ructures  
with f r i c t i o n  properties i n  m e t a l s ,  these  s tudies  w e r e  r e s t r i c t ed  because of 
t h e  presence of oxides and adsorbants on m e t a l  surfaces. 
vacuum 
contaminants . 

By examining t h e  f r i c t i o n  behavior of a s ingle  material dur- 

Experiments i n  
t o  10-lo m Hg) grea t ly  reduce t h e  a v a i l a b i l i t y  of these surface 

The objectives of t h i s  invest igat ion w e r e  t o  determine (1) t h e  effect  of 
c rys t a l  s t ruc ture  i n  t h e  rare-ear th  metals and i n  re la ted  m e t a l s  on f r ic t ion ,  
wear ,  and metal-transfer charac te r i s t ics  and ( 2 )  t h e  e f fec t  of c rys t a l l i ne  
phase changes i n  t h e  rare-earth metals on these  same properties.  

Frict-ion and wear experiments were conducted i n  a vacuum environment 
(lo-' t o  10-l' mm Hg) with a hemispherically t ipped r.ider specimen s l id ing  on 
a f la t  ro ta t ing  disk surface. The disk specimen was rotated t o  produce s l i d -  
ing ve loc i t ies  of 55 t o  2000 f e e t  per minute and t h e  r i d e r  was loaded against  
t h e  disk surface with loads t o  3000 grams. 
ambient temperatures from -looo t o  500' F. 

%eriments were conducted at 

APPARATUS 

The apparatus used i n  t h i s  investigation i s  described i n  d e t a i l  i n  re fer -  
ence 8 and i s  shown i n  f igure  1. Basically t h e  apparatus consisted of t h e  ex- 

111 Drive shaft 

TO mechanical pump 
wi th  l iquid-ni t rcqen 
and zeolite traps 

[cD-7815/ 
F igure l .  - Vacuum f r i c t ion  and wear apparatus. 

perimental specimens (a 2--in. 1 -dim.  

f l a t  disk and a 3/16-in.-rad. r ider ) ,  
which was mounted in  a vacuum cham- 
ber. The disk specimen w a s  driven 
through a magnetic dr ive coupling. 
The coupling had two 20-pole magnets 
0.150 inch apart with a 0.030-inch 
diaphragm between magnet faces;  The 
dr iver  magnet, outside t h e  vacuum 
system, w a s  coupled t o  a hydraulic 
motor. The second magnet was com- 
p l e t e ly  covered with a nickel-alloy 
housing (see f ig .  1) and was mounted 
on one end of t h e  shaf t  within t h e  
chamber. The end of t h e  shaf t  t ha t  
was opposite t h e  magnet carr ied t h e  
disk specimen. 

2 

The r ide r  specimen w a s  supported 
i n  t h e  specimen chamber by an arm 
t h a t  was mounted by external  gimbals 
and sealed by a f l ex ib l e  bellows t o  
t h e  chamber. A linkage at t h e  other 
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end of t h e  retaining arm from t h e  r i d e r  specimen w a s  connected t o  a strain-gage 
assembly, which was used t o  measure f r i c t i o n a l  force.  Load w a s  applied through 
a deadweight loading system. In order t o  heat t h e  specimens, a s m a l l  
tantalum-wire-wound heater w a s  placed around t h e  disk and t h e  r ide r  specimens, 
and t h e  specimens were rad ian t ly  heated. The bulk r i d e r  specimen temperatures 
were measured with a thermocouple positioned i n  t h e  body of t h e  r ider .  

Attached t o  t h e  lower end of t h e  specimen chamber w a s  a 400-liter-per- 
second ionization pump and a mechanical forepump with liquid-nitrogen and 
zeo l i t e  t raps .  The pressure i n  t h e  chamber was measured adjacent t o  t h e  speci- 
men with an inverted magnetron cold-cathode gage (Kreisman). In  t h e  same plane 
as t h e  specimens and t h e  ionizat ion gage was a diatron-type m a s s  spectrometer 
(not shown i n  f i g .  1) for determination of gases present i n  t h e  vacuum system. 

A c o i l  of 5/16-inch-diameter s t a in l e s s - s t ee l  tubing 20 feet long was used f o r  
e i the r  liquid-nitrogen or liquid-helium cryopumping of t h e  vacuum system. 

SPEClMEN FINISH AND CLEANING PROCEDURE 

The disk and t h e  r i d e r  specimens used i n  f r i c t i o n  and wear experiments 
were f inished t o  a roughness Of 4 t o  8 microinches. Before each experiment, 
t h e  disk and t h e  r i d e r  were given t h e  same preparatory treatment: 
r insing with acetone t o  remove o i l  and grease, 
gated alumina on a so f t  polishing cloth, and (3) thorough r insing with t a p  
water followed by d i s t i l l e d  water. For each experiment, a new s e t  of specimens 
was used. 

(1) thorough 
( 2 )  polishing with moist l ev i -  

(a) Body-centered 
cubic. 

Laver 

A 

B 

I 
A C 

(b) Face-centered 
cubic. 

Laver 

Layer 

A 

C 

A 

C 

B 

C 

B 

A 

B 

A 

(c) Normal hexagonal. (d) Hexagonal double 

Figure 2. - Crystal structures. 

c-axis. 
(e) Hexagonal; samarium 

type. 
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RESULTS AND DISCUSSION 

Polymorphism i n  Rare-Earth Metals 

An in te res t ing  property of t h e  rare-ear th  metals i s  'cheir c rys t a l  s t ruc-  
ture. 
room temperature. The hexagonal forms i n  which t h e  r a re  earths may ex is t  are 
of t h ree  types. 
cubic s t ructures  i n  f igure  2. The first or normal hexagonal form ( f ig .  2 ( c ) )  
with t h e  ABA stacking sequence of t h e  A and t h e  B layers  is tha t  represented by 
metals such as magnesium and i n  t h e  rare-earth s e r i e s  by such metals as holmium, 
erbium, and gadolinium. This par t icu lar  form of hexagonal s t ruc ture  has t h e  
shortest  c-axis ( c rys t a l  height) l a t t i c e  constant. 
onal c rys t a l l i ne  form is  t h e  hexagonal double c-axis o r  t h e  lanthanum-type 
c r y s t a l  s t ruc ture  ( f ig .  2 (d ) )  with ABACA stacking sequence of t h e  A, B, and 
C layers.  This c rys t a l l i ne  form characterizes lanthanum, neodymium, and 
praseodymium. The t h i r d  form i s  t h e  samarium type ( f ig .  Z ( e ) )  with t h e  stack- 
ing sequence ABABCBCACA. 
is  four and a half  times that of t h e  normal hexagonal s t ructure .  Some research 
invest igators  have termed t h i s  s t ruc ture  "rhombohedral" ( re fs .  8 and 9 ) .  

Many of these metals have a close-packed hexagonal c rys t a l  s t ruc ture  at 

These types are compared with body-centered and face-centered 

The second type of hexag- 

The c-axis l a t t i c e  constant of t h i s  par t icu lar  form 

Many of t h e  rare-ear th  metals undergo c r y s t a l  transformation. Lanthanum, 
fo r  example, will transform from a hexagonal c r y s t a l  s t ruc ture  t o  a face- 
centered cubic s t ruc ture  at about 500° F as shown i n  f igure  3 and transform 
from t h e  face-centered cubic t o  a body-centered cubic s t ruc ture  at 1594' F. 
Transformations from hexagonal t o  body-centered cubic s t ruc ture  occur with 
neodymium at 1584O F and with praseodymium at  1472' F. 
f igure 3, undergoes th ree  c rys t a l  transformations. Cerium transforms from t h e  

Cerium, as indicated i n  

Hexagonal structures 
Structure 

2800 

2 4 0 0 E  

2000 ' 

407-- 
- 400 

D Body-centered cubic 
m Face-centered cubic 
a Hexagonal 

I 

Hexagonal, 
samarium 
tw 

I Normal 
Normal hexagonal h exaaonal 

Hexagonal double c-axis -- 
n 

~ ... ... ... ... 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
H O  Er Gd Sm 

\ - 1- 

Rare-earth metals Related metals 

Figure 3. - Crystal transformations indicated i n  the literature for rare-earth and related metals (ref. 1). 
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face-centered cubic t o  t h e  close-packed hexagonal s t ruc ture  at -321' F and re -  
t a i n s  t h i s  s t ruc ture  t o  -99' F. A t  -99O F it transforms t o  t h e  face-centered 
cubic structure,  which it re t a ins  t o  1337' F, when it transforms t o  t h e  body- 
centered cubic s t ructure .  Thallium m e t a l ,  which is  not a rare earth, t rans-  
forms from t h e  close-packed hexagonal t o  t h e  body-centered cubic s t ruc ture  at 
446' F (refs. 2 and 10). 

Lanthanum 

Most f r i c t i o n  experiments w e r e  conducted i n  vacuum with 99.9-percent-pure 
lanthanum m e t a l  s l id ing  on 440-C s t a in l e s s  s t ee l .  Some check data were ob- 
ta ined  with lanthanum of only 99-percent purity.  Experiments with t h e  rare-  
ea r th  metals d i c t a t e  t h e  use of a vacuum or iner t  environment because of t h e  
extremely react ive nature of t h e  r a re  ear ths  with oxygen, water, and various 
other gases. 

I n  order t o  determine t h e  influence of t h e  c rys t a l  transformation i n  

.a 

Load decreased to lo00 g 
immediately afler r u n  
at 2500 g 

d Specimen cooled to room 
temperature afler r u n  

A 
-0' 

1.6 
c 0 .- 
ti 
1- 

L c 

6 .a 

Load, g 
a) Variation with load. Sliding velocity, 400 feet per minute; no 
external heating. 
- 

r14.18~10-~ cu in./ft sliding 

0 Specimen cooled to room 
temperature afler running 
at 9sO Wmin 

I I I I I - - . -  

250 500 750 1000 1250 
Sliding velocity, fllmin 

v o  

(b) Variation with sliding velocity. Load, lo00 grams; no external 
heating. 

t To complete welding 

0 100 200 300 400 500 
Temperature, '% 

IC) Variation with temperature. Load, lo00 grams; sliding velocity, 
200 feet per minute. 

Figure 4. -Coefficient of frictio of lanthanum sliding on 440-C 
stainless steel in  vacuum (10- mm Hg). a 
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lanthanum on i ts  f r i c t i o n  be- 
havior, a f r i c t i o n  experiment was 
conducted as a function of ambi- 
ent temperature. The r e s u l t s  ob- 
ta ined in  t h e  f r i c t i o n  experiment 
a r e  presented i n  f igure  4. 
a 1000-gram load and a s l id ing  
ve loc i ty  of 200 f ee t  per minute 
in  vacuum of 10-9 millimeter of 
mercury, t h e  f r i c t i o n  coeff ic ient  
was less than 0.4 at 85O, 150° 
and 165' F ( f ig .  4 ( c ) ) .  A t  tem- 
peratures above 165O F t h e  f r i c -  
t i o n  coeff ic ient  began t o  in- 
crease. Between 200' and 400' F 
t h e  f r i c t i o n  coeff ic ient  was con- 
s tan t  at s l i g h t l y  less than 0.8. 
Above 400' F t h e  f r i c t i o n  co- 
e f f ic ien t  fur ther  increased and 
reached a m a x i m u m  of 1.35 at a 
temperature possibly associated 
with c r y s t a l  transformation. 
The portion of t h e  curve below 
165' F is  believed t o  represent 
t h e  close-packed hexagonal crys- 
t a l l i n e  form of lanthanum s l id ing  
on 440-C s t a in l e s s  s t ee l .  The 
plateau between 200° and 400° F 
is  very similar t o  t h a t  observed 
i n  cooling curves. 
t ha t  with lanthanum t h e  plateau 
represents incomplete t ransf orma- 
t i o n  to t h e  face-centered cubic 
s t ructure .  This e f fec t  seems t o  

With 

It may be 



TABLE 11. - X-RAY DIFFRACTION DATA FOR LANTHANUM AND NEODYMIUM 

Lanthanum Neodymium 

IrNnedi- I @-La, 
a t e l y  on ASTM 

Hexagonal a-La Iiexagonal a-Nd 

ASTM I 
Immedi- 

a t e l y  on 
reaching 
850° F 

Tempera- 
.ure dropped 
t o  350' F ASTM Experimen- 

; a l l y  d e t e r -  
mined a t  
750 F 

reaching 
650° F d 

value, 

1.33 
1.21 
1.18 
1.08 
1.02 
.94 
.90 

- _ _ _  .88  

_ _ _ _  _-  
-___ _ _  _ _ _ _  _ _  - _ _ _  _ _  
___-  _ _  _ _ _ _  _ _  
- -__ _ _  _ _  

A 1/10 

- 
:nten- 
S i t Y ,  
1/10 

_ _  -_ 
100 -- _ _  
70 _ _  -_ 
90 _ _  _ _  _ _  
100 
50 

20 
70 
70 
50 
60 
20 
60 
50 

-_ 

~ 

Inten- 
s i t y ,  
1/10 

_- 
60 
100 

80 _- -- _- 
80  

80 
-- 
-- -- 
100 
80 
10 
20 
40 
40 
40 
20 
40 
-c -- 

t a l i y  de te r -  
d 

A 
a lue ,  

_ _ _ _  
3.40 _ _ _ _  
---- 
3.03 
2.98 

2.51 
2.26 
1.94 

1.84 

_ _ _ _  

-___ 
_--_ 

d 
value, 

A 

-___ 
3.29 
3.04 
2.86 - -__ 
--__ _--- 
1.88 

1.71 
--__ 
__-_ ___-  
1.60 
1.52 
1.41 
1.27 
1.21 
1.09 
1.05 
1.00 
.95 -__-  

--__ 

d 

A 
a lue,  

___-  
---- ___- 
3.14 
3.03 
2.92 
2.77 
2.45 
2.14 

d 
ralue, 

A 

3.48 
3.42 
3.30 
3.10 
3.04 
2.99 
2.86 
2.53 
2.29 
1.95 
1.92 
1.86 
1.74 
1.72 
1.71 - _ _ _  
--__ _ _ _ _  
1.59 
1.41 -___ 
--_- 
--__ 

Cnt en 
S i t Y .  
1/10 

100 
100 
20 
30 
80 
30 
20 
10 
10 
5 
5 
10 
5 
10 
10 _ _  _ _  _ _  
10 
20 _ _  _ _  _ _  

~ 

value, i A  

1.88 
1.82 

---_ 
1.66 
1.56 
1.55 
1.53 
1.48 
1.47 

1.67 
1.39 

be substantiated by t h e  X-ray data  of t a b l e  I1 f o r  lanthanum. When X-ray data  
were obtained at a temperature above t h e  transformation temperature (500° F), 
t h e  pa t te rn  contained l i n e s  f o r  some retained hexagonal form. If t h e  sample 
were held at temperature (above transformation) f o r  a long period of time, 
complete conversion would occur. The f r i c t i o n  data  obtained above 400° F 
represent t h e  cubic s t ruc ture  of lanthanum. 

A c rys t a l  transformation is  introduced by increasing t h e  temperature of 
t h e  material. Increasing s l id ing  veloci ty  can produce increases in  specimen 
temperatures without increasing t h e  ambient temperature. Fr ic t ion  data were 
therefore  obtained with lanthanum s l id ing  on 440-C s t a in l e s s  s t e e l  i n  vacuum at 
various s l id ing  ve loc i t ies .  The r e su l t s  obtained a re  presented i n  f igure  
4 ( b ) ) .  
was l e s s  than 0.4 or very nearly t h e  same as obtained at ambient temperatures 
t o  165O F. A t  s l id ing  ve loc i t ies  above 375 feet per minute, t h e  f r i c t i o n  co- 
e f f i c i en t  increased and reached a m a x i m u m  of 1 . 2  at about 750 fee t  per minute. 
This marked change i n  f r i c t i o n  is believed t o  r e f l e c t  the c rys t a l  transforma- 
t i o n  of lanthanum from close-packed hexagonal ( f r i c t i o n  coeff ic ient  of l e s s  
than 0.4) t o  face-centered cubic ( f r i c t i o n  coeff ic ient  of 1 . 2 ) .  
ning at 980 f ee t  per minute t h e  specimens w e r e  stopped and allowed t o  cool t o  
room temperature overnight, t h e  f r i c t i o n  data  obtained at 250 feet per minute 
corresponded t o  those obtained with t h e  hexagonal c rys t a l  form, which indicated 
that t h e  transformation was reversible  on slow cooling. 

A t  s l id ing  ve loc i t i e s  t o  375 f ee t  per minute, t h e  f r i c t i o n  coeff ic ient  

If a f t e r  run- 

The portion of t h e  f r i c t i o n  experiments conducted with t h e  face-centered 
cubic form of lanthanum were not only characterized by high f r i c t i o n  values but 
by very marked surface d i s t r e s s  as indicated by unstable s l id ing  of t h e  r i d e r  
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(a) Sliding velocity, 980 feet per minute. (b) Sliding velocity, 196 feet per minute. 

Figure 5. - 440-C stainless steel disk specimens. Rider specimen, lanthanum; load, lo00 grams; ambient pressure, millimeter of mercury; 
ambient temperature, 75OF; duration of run, 1 hour. 

TABLF: 111. - WEAR FOR VARIOUS R1DE.R MATERIALS 

[Sliding against hardened 440-c stainless  
s teel ;  load, 1000 g; ambient pressure, 
10-9 m Hg; duration of experiment, 1 hr. 1 

I r 

3 90 
less s t e e l  

"Diamond pyramid hardness. 

Rider wear , 
cu in.  / f t  s l iding 

1.32~lO-~ 1 
1 

specimen against  t h e  disk. T h i s  
behavior pa t te rn  is  analogous t o  
that observed w i t h  other cubic 
s t ructures  (e.g., i ron and 

.nickel)  i n  vacuum. The r e su l t  
of t h i s  behavior can be seen i n  
t h e  photographs of the  440-C 
disk specimen of f igure  5. A t  a 
s l id ing  ve loc i ty  of 980 f e e t  per  
minute (cubic s t ruc ture) ,  m a s s  
m e t  a1 t r ans fe r  of lanthanum t o  
the 440-C disk specimen occurred, 
The globules of metal t rans-  
ferred i n  some instances stood 
3/32 inch above. t he  440-C sur- 
face. With t h e  same mater ia l  
combination at 196 f e e t  per 

minute (hexagonal s t ructure) ,  t he  run was very smooth and a very t h i n  t r ans fe r  
f i lm of lanthanum t o  440-C was observed. The wear values t o  lanthanum obtained 
at t h e  two s l id ing  ve loc i t i e s  a re  presented i n  f igure  4(b)  (p. 6 )  and i n  
table  111. 

Reference 1 indicates that  t h e  c r y s t a l  transformation of lanthanum i s  
Increasing the  load upon t h e  lanthanum r i d e r  specimen pressure sensit ive.  

should induce t h e  c rys t a l  transformation. Examination of t h e  f r i c t i o n  coef- 
f i c i e n t  as a function of load i n  f igure  4 indicates  tha t  increasing the load 
can bring about t h e  c r y s t a l  transformation. This transformation, however, 
could be due t o  increasing temperature resu l t ing  from increasing load. A t  
loads above 1500 grams t h e  coeff ic ient  of f r i c t i o n  begins t o  increase. If 
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a f t e r  running at 2500 grams t h e  load i s  reduced t o  1000 grams the  f r i c t i o n  co- 
e f f i c i en t  remains high. The specimens were allowed t o  stand overnight un- 
loaded. A t  500 grams t h e  f r i c t i o n  returned t o  near t h e  o r ig ina l  value, which 
indicated again t h e  r e v e r s i b i l i t y  of t h e  c rys t a l  transformation of lanthanum. 

1.0 

c 
u 
0 .- c .- * 
c 

c 
0 

c .- al u 

0 

.- c 
5 

.4 

Although i n  those experiments with t h e  lanthanum s l id ing  on 440-C a t r ans -  
f e r  f i lm of lanthanum t o  440-C resu l ted  i n  lanthanum s l id ing  on lanthanum, it 
was decided t o  determine t h e  f r i c t i o n  charac te r i s t ics  of lanthanum s l id ing  on 
i t s e l f .  The f r i c t i o n  r e s u l t s  obtained a t  various s l id ing  ve loc i t ies  with 
lanthanum s l id ing  on lanthanum a re  presented i n  f igure  6. A t  s l id ing  veloc- 
i t i e s  below 350 f e e t  per  minute t h e  f r i c t i o n  coeff ic ient  was less than 0.4. 
When t h e  s l id ing  ve loc i ty  was increased above 375 f e e t  per minute, t h e  f r i c t i o n  
coeff ic ient  increased and reached a value of about 1.4. The increase occurred 
a t  approximately t h e  same s l id ing  ve loc i ty  encountered with lanthanum s l id ing  
on 440-C s t a in l e s s  s t ee l .  When t h e  specimens were allowed t o  cool, t h e  
f r i c t i o n  coeff ic ient  returned t o  t h e  o r ig ina l  value (less than 0.4), which 
again a t t e s t ed  t o  t h e  r e v e r s i b i l i t y  of t h e  c rys t a l  transformation. 

1.5- t h e  hexagonal form below 

periments were therefore  
conducted as a function of 

- s l id ing  ve loc i ty  and tem- 
perature f o r  neodymium 
(99 percent, with praseo- 0 Increasing sliding velocity 
dymium as t h e  pr inc ipa l  

o Data obtained afler run at 1250 fl/min impurity) s l id ing  on 440-c 
wi th  period allowed for specimen s t a in l e s s  s t ee l .  The re -  
cooling and structure reversion suits obtained in these 

experiments a r e  presented 
i n  f igure  7. Based on t h e  

ated with t h e  transforma- 
t i o n  from t h e  hexagonal 

0 
A - -4 1584' F. Fr ic t ion  ex- - 

1.3- 
-2- 

- 

.8- 
- 

.6- 
- 
- high temperature associ-  

. 2 1 l 1 1 1 1 1 l 1 1 1 l l l  t o  t h e  body-centered form, 

- 

Although t h e  concept of t h e  influence of so l id  s o l u b i l i t y  on f r i c t ion ,  
wear, and welding tendencies is  frequently referred t o  i n  t h i s  l i t e r a tu re ,  t h e  
data  obtained with lanthanum s l id ing  on lanthanum would seem t o  indicate  t h a t  
c r y s t a l  s t ruc ture  may be of appreciable importance. 

Neodymium 

- 
Figure 6. -Coefficient of f r ic t ion for lanthanum sliding on lanthanum at various 

sliding velocities in vacuum (104 mm Hg). Load, 500 grams; ambient tempera- 
ture, 75O F. 

r e l a t i v e l y  low i n  t h e  
range of s l id ing  veloc- 
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Velocity 
0 Increasing 
A Decreasing 

Bulk rider 
temperature, 

OF 

Temperature 
0 Increasing 

Temperature 
0 Increasing 

Sliding velocity, fllmin Temperature, OF 

(a) Variation with sliding velocity. (b) Variation with ambient temperature. Sliding velocity, 200 feet per 
minute. 

Figure 7. - Coefficient of friction for neodymium sliding on 440-C stainless steel in vacuum (lo4 mm Hg). Load, lo00 grams. 

it i e s  and temperatures investigated. The experimental evidence, however, as 
indicated i n  f igure  7, d id  not bear out t h e  ant ic ipated r e su l t s .  

Fkamination of t h e  coeff ic ient  of f r i c t i o n  as a function of ambient t e m -  
perature f o r  neodymium s l id ing  on 440-C s t a in l e s s  steel  indicated t h a t  t h e  
f r i c t i o n  coeff ic ient  was less than 0.25 at ambient temperatures t o  300' F. 
Above 300' F, as indicated by f igure  7, t h e  coeff ic ient  of f r i c t i o n  began to 
increase markedly. 

Fr ic t ion  data obtained i n  f igure  7 f o r  neodymium s l id ing  on 440-C s t a in -  
less s t e e l  as a function of s l id ing  ve loc i ty  indicated an increase i n  f r i c t i o n  
coeff ic ient  at s l id ing  ve loc i t ies  above 500 f e e t  per minute. The r i d e r  speci-  
men (neodymium) bulk temperature was measured during t h e  s l id ing  ve loc i ty  ex- 
periments, and some of t h e  values obtained a r e  presented i n  f igure  7. With 
t h e  first f r i c t i o n  data  point obtained above 0.2 an indicated temperature of 
285O F was recorded. 
ambient -t emperature experiments . 

This value is about 15' F below t h a t  obtained i n  t h e  

The sliding-velocity and ambient -temperature experiments with t h e  neo- 
dymium sample examined (99 percent ) indicated t h a t  a c rys t a l  transformat ion 
f o r  neodymium must occur below 1584' F, t h e  temperature indicated i n  t h e  
l i t e r a t u r e .  The r ide r  specimens used i n  t h i s  study were therefore  placed i n  
an argon atmosphere and heated i n  an X-ray furnace to 850° F. 
obtained at 850' F did not correspond t o  those obtained at room temperature. 
The interplanar  spacing d values obtained a re  presented i n  t a b l e  I1 (p. 7 )  
and indicate  a c rys t a l  transformation. Further, as indicated i n  reference 1, 
s m a l l  amounts of alloying elements (impurit ies 1 can influence c r y s t a l  t rans-  
format ion temperatures. This e f fec t  i s  re f lec ted  i n  t h e  transformation t em- 
peratures reported i n  references 1 to 3. With 99.0 percent lanthanum refer -  

X-ray pat terns  
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ence 3 reports a c rys t a l  transformation temperature of lanthanum from t h e  hex- 
agonal t o  t h e  cubic s t ructure  of 1112' t o  1202O F, while w i t h  higher pur i ty  
lanthanum (99.9 percent) references 1 and 2 report 500° F as  t h e  transformation 
temperature. The addition of s m a l l  percentages of alloying materials may be a 
method f o r  re ta ining t h e  desirable  f r i c t i o n  properties of t h e  hexagonal form. 

v ._ { t o  0 
U . 4 - I  I I I I I I I I I 

Praseodymium 

" - '8 oo 0 

I I I I I I I I I  

Since, as mentioned ear l ie r ,  t h e  propert ies  of lanthanum, neodymium, and 
praseodymium a r e  extremely similar and they a l l  have t h e  same form of t h e  
hexagonal c rys t a l  structures,  it was decided t o  examine t h e  f r i c t i o n  proper- 
t i e s  of praseodymium (99 percent and 99.9 percent).  
conducted with praseodymium s l id ing  on 4 4 0 - C  s t a in l e s s  s t e e l  and t h e  f r i c t i o n  
coeff ic ient  was determined both as a function of s l id ing  ve loc i ty  and ambient 
temperature. The r e su l t s  obtained i n  these  experiments are presented i n  f ig -  
ure 8. In  general, at low s l id ing  ve loc i t i e s  and ambient temperatures t h e  

Some experiments were 

0 - 4 0 0  800 1200 1600 2oM1 100 1% m 2 M  300 3% 400 
Sliding velocity, ftlmin Temperature, OF 

(a) Variation wi th sliding velocity. (b) Variation wi th ambient temperature. Sliding velocity, MO feet 

mm Hg). Load, loo0 grams. 

f r i c t i o n  coeff ic ient  was higher than those observed w i t h  lanthanum and neo- 
dymium. 
1950 fee t  per minute an increase i n  f r i c t i o n  w a s  observed. T h i s  increase may 
r e f l ec t  a transformation s i m i l a r  t o  t ha t  observed f o r  neodymium and lanthanum. 
Insuff ic ient  evidence, however, i s  avai lable  t o  substant ia te  a transformation. 

per minute. 

Figure 8. - Coefficient of f r ic t ion for praseodymium sliding on 440-C stainless steel in vacuum 

A t  ambient temperatures above 350° F or  a t  a s l id ing  veloci ty  of 

Holmium, Erbium, Gadolinium, Dysprosium, and Y t t  rim 

The rare-ear th  metals, holmium, erbium, gadolinium, and dysprosium, as 
well as yttrium, have t h e  magnesium-type, AB packing sequence or t h e  simplest 
type of stacking i n  t h e  hexagonal c r y s t a l  form. Since t h i s  form d i f f e r s  from 
that of lanthanum, neodymium, and praseodymium, some f r i c t i o n  experiments were 
conducted as a function of s l id ing  ve loc i ty  f o r  these  m e t a l s  s l id ing  on 440-C.  
The r e s u l t s  obtained i n  these experiments a r e  presented i n  f igure  9. 
holmium, dysprosium, and erbium t h e  coeff ic ient  of f r i c t i o n  increased with in- 
creasing s l id ing  velocity.  
where t h e  f r i c t i o n  remained r e l a t ive ly  constant. Y t t r i u m  metal, however, did 
not exhibit  t h e  same t rend  of increase i n  s l id ing  velocity.  
s imilar  t o  t h e  r a r e  ear ths  i n  many respects, has propert ies  that d i f f e r  from 
those of t h e  rare earths.  

With 

T h i s  e f fec t  was not observed with gadolinium, 

Y t t r i u m ,  although 

It i s  in te res t ing  t o  note t h a t  t h e  coeff ic ients  of 
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I .2--. f r i c t i o n  with t h e  
- magnesium-type s t ruc ture  

of erbium, holmium, gado- 
linium, dysprosium, and 0 Holmium 

0 Erbium yttrium are higher than 
0 Yttrium those obtained with those 
A Dysprosium metals possessing t h e  
0 Gadolinium 

c 1.0- 
0 

u 
.- c 

l an t  hanum-type hexagonal 
f om. 

r\ " 

Samar ium 

The most complex 
hexagonal c r y s t a l  form is 
that of t h e  m e t a l  samarium 
(refs .  9 and 10; see 
f i g .  2, p. 4). The f r i c -  
t ion coeff ic ients  f o r  

.4 I I I L L U  
0 200 400 600 800 1000 1200 1400 ' 

Sliding velocity, ftlmin 

Figure 9. -Coefficient of friction of various rare-earth metals sliding on 440-C 
mm Hg). Load, lo00 grams; ambient tempera- stainless steel in  vacuum 

ture, 75OF. 

samarium s l id ing  on 440-C a t  various s l id ing  ve loc i t ies  i n  vacuum were deter-  
mined and t h e  r e su l t s  obtained a re  presented i n  f igure  10. 
f r i c t i o n  f o r  samarium showed a s l igh t  increase with increasing s l id ing  veloc- 
i t y .  The f r i c t i o n  values were, however, lower than those obtained with t h e  
materials possessing t h e  simple magnesium-type hexagonal c rys t a l  form. The 
mean values obtained with samarium s l id ing  on 440-C were very much lower than 
those obtained with 440-C s l id ing  on 440-C despi te  a wide margin of difference 
i n  hardness (see t a b l e  111, p. 8) .  

The coeff ic ient  of 

Effect of Hexagonal Crystal  Form on Fr ic t ion  

If t h e  three  hexagonal c r y s t a l  forms of t h e  rare-ear th  metals a r e  con- 
sidered, t h e  lowest f r i c t i o n  coeff ic ients  a r e  obtained with t h e  lanthanum- and 
samarium-type s t ructures .  The rare earths and yttrium with t h e  simple hexago- 
nal, magnesium-type s t ruc ture  exhibit  higher f r i c t i o n  coeff ic ients .  
t i o n  of l a t t i c e  constants f o r  t h e  c rys t a l l i ne  forms indicate  var ia t ions i n  t h e  
e-axis. 

Examina- 

The f r i c t i o n  coef'ficients f o r  t h e  r a r e  earths, p lo t ted  as a function 
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.- 
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Sliding velocity, ftlmin 

Figure 10. - C efficient of friction of samarium sliding on 440-C stainless steel in  8 vacuum (10- mm Hg). Load, IO00 grams; ambient temperature, 75O F. 
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of c-axis length i n  angstroms, a r e  presented i n  f igure  11. The metals with t h e  
smallest c-axes exhibit  t h e  highest coeff ic ients  of f r i c t ion .  

close-packed hexagonal c rys t a l  form 

Er 
a"? 

0 Increasing sliding velocity 
- Decreased sliding velocity 

0 immediately after r u n n i n g  0 

Thallium 

.2 

- 

- 

- T---4 ---- ---------- 
I I I I I I I I I I A I  I I I I I I I I 

A t  s l id ing  ve loc i t ies  of l e s s  than 200 f ee t  per minute t h e  coeff ic ient  of 
f r i c t i o n  w a s  l e s s  than 0.4. The f r i c t i o n  coeff ic ient  increased markedly at 
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s l id ing  ve loc i t ies  i n  excess of 200 f e e t  per minute and reached values i n  ex- 
cess of 1.0.  This marked change i n  f r i c t i o n  i s  believed t o  be due t o  t h e  cry- 
stal  transformation from a close-packed hexagonal t o  a body-centered cubic 
s t ructure .  I f  t h e  s l id ing  ve loc i ty  i s  fu r the r  increased t o  1000 feet per 
minute, t h e  f r i c t i o n  coeff ic ient  decreases. The melting point of t h a l l i u m  is 
577' F. 
s l id ing  interface.  The f r i c t i o n  coeff ic ient  at 2000 f e e t  per minute was  less 
than 0.1. In  order t o  check t h a t  melting had occurred, t h e  s l id ing  ve loc i ty  
w a s  decreased f irst  t o  500 and then t o  125 feet per minute and t h e  f r i c t i o n  
coeff ic ient  remained l e s s  than 0.1, which indicated that melting had, i n  fac t ,  
occurred. Normally an increase i n  f r i c t i o n  i s  observed a t  t h e  point of melt- 
ing and i s  followed by a marked decrease. 
at some point between 1000 and 2000 feet per  minute, where f r i c t i o n  data  were 
not obtained. 

The decrease was believed t o  be due t o  melting of t h e  thall ium at t h e  

This may be assumed t o  have occurred 

The specimens were allowed t o  cool t o  room temperature and t h e  f r i c t i o n  
coeff ic ient  returned t o  that obtained i n i t i a l l y ,  which indicated t h a t  t h e  
c rys t a l  transformat ion was reversible.  

Although t h e  f r i c t i o n  data  f o r  thall ium w e r e  obtained with a 99.999- 
percent-pure metal and t h e  experiments were conducted i n  a vacuum of 1O-I '  
millimeter of mercury, two s e t s  of r e su l t s  were obtained at a s l id ing  ve loc i ty  
of 175 f ee t  per minute. Five d i f fe ren t  f r i c t i o n  experiments were conducted 
with t h a l l i u m  at t h i s  s l id ing  velocity.  These experiments gave th ree  f r i c t i o n  
values of less than 0.4 and two values of near 1.0. Checking t h e  ASTM X-ray 
Diffraction Card F i l e  shows t h a t  f i v e  d i f fe ren t  pat terns  ex is t  f o r  t h a l l i u m .  
Since thall ium exhibi ts  only one c r y s t a l  transformation, only two pat terns  
should ex is t .  It i s  possible, however, t o  quench i n  t h e  high-temperature 
c rys t a l l i ne  form. Thallium was  heated and rapidly quenched i n  l i qu id  nitrogen 
with some evidence of re ta ining t h e  high-temperature form as ident i f ied  by 
X-ray d i f f rac t ion  analysis.  If t h e  specimens were allowed t o  cool slowly i n  
vacuum, t h e  transformation was reversible  (see f i g .  1 2 ) .  If, however, rapid 
quenching during machining of t h e  specimens occurred, then t h e  high- 
temperature form could possibly be obtained. The existence of t h e  two forms 
i s  believed t o  be responsible f o r  t h e  differences i n  f r i c t i o n  observed. 

Cerium 

Some f r i c t i o n  experiments were conducted with cerium metal i n  an argon 
atmosphere at -100' F and a t  room temperature. Cerium has a normal hexagonal 
lanthanum-type s t ruc ture  at -100' F and a face-centered cubic s t ruc ture  at 
room temperature. A f r i c t i o n  coeff ic ient  of 0.22 w a s  obtained at -100' F and 
of 1 . 2  at room temperature. These r e su l t s  again indicate  t h e  e f fec t  of crys- 
t a l  s t ruc ture  on f r i c t i o n .  

Cobalt 

Cobalt a l s o  undergoes a c rys t a l  transformation from t h e  normal hexagonal 
t o  t h e  face-centered cubic s t ruc ture  a t  about 750' F. It is indicated i n  t h e  
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l i t e r a t u r e  that t h e  transformation is  very sluggish and that cobalt tends t o  
ex is t  as a mixture of two a l lo t ropes  over a wide range of temperatures with t h e  
normal hexagonal s t ruc tu re  predominating below 750' F and t h e  face-centered 
cubic s t ruc ture  above that temperature. F r i c t ion  data  obtained i n  vacuum with 
cobalt s l id ing  on i t s e l f  indicated no r e a l  conclusive changes tha t  might be 
a t t r i bu ted  t o  a transformation. It may be t h a t  w i t h  proper heat treatment and 
quench, t h e  two d i s t i n c t  forms could be obtained. 

CONCLUSIONS 

From an invest igat ion of t h e  c r y s t a l  s t ruc ture  on f r i c t i o n  charac te r i s t ics  
of rare-ear th  and re la ted  metals i n  vacuum t o  10-l' millimeter of mercury, t h e  
following observations and conclusions a r e  made: 

1. The c r y s t a l  s t ruc ture  of some of t h e  rare-ear th  metals and t h a l l i u m  
markedly influence t h e i r  f r i c t ion ,  wear, and metal-transfer charac te r i s t ics  i n  
vacuum. The hexagonal c rys t a l l i ne  phase of t h e  rare-ear th  metals and t h a l l i u m  
exhibit  much lower f r i c t ion ,  wear, and metal-transf e r  charac te r i s t ics  than do 
t h e  face-centered or  t h e  body-centered phases of these  metals. 

2. Crystal  transformation f o r  some of these  metals (e.g., lanthanum) 
could be induced by varying s l id ing  ve loc i ty  and load as well  as by varying 
ambient temperatures. 

3. O f  t h e  th ree  hexagonal-type c r y s t a l  structures,  t h e  most favorable 
f r i c t i o n  charac te r i s t ics  a r e  obtained with those with t h e  la rges t  e-axis, t ha t  
is, those metals with t h e  lanthanum- and samarium-type c rys t a l  s t ructures .  

4. Although data  i n  t h e  l i t e r a t u r e  do not indicate  a c rys t a l l i ne  t ransfor -  
mation f o r  neodymium below 1584' F, f r i c t i o n  data  of t h i s  invest igat ion indi-  
cated that one can occur at a considerably lower temperature. X-ray d i f f rac-  
t i o n  data  obtained i n  an argon furnace confirmed a transformation at a tem- 
perature below 850° F. 

5. F r i c t ion  data  obtained with lanthanum s l id ing  on e i the r  lanthanum or on 
440-C s t a in l e s s  s t e e l  indicated a c r y s t a l  transformation of lanthanum. 

Lewis Research Center 
National Aeronautics and Space A d m i n i s t r a t  ion 

Cleveland, Ohio, Apri l  8, 1964 
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